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Abstract 

Statistical models of radar cross section in radar system 

simulation are common for providing data to test the 

interaction of the target tracking systems and the decision 

making activities.   For many decades, the scintillation of the 

target RCS has been represented using models developed by 

Swerling.   This paper investigates how well the Swerling 

models relate to the RCS of modern targets, and outlines a 

computationally simple approach to generating representative 

random RCS values based on a piecewise approximation of 

the target RCS cumulative distribution function that employs 

two sections of a Weibull distribution, and also provides 

simple mechanisms to mimic the temporal correlation effects 

of scintillation seen with target manoeuvre and the variation 

of RCS with range. 

1 Introduction 

The fidelity requirements of radar models is very dependent 

on the particular radar simulation application.  For simulation 

and testing of surveillance radar systems and target trackers, 

representative detection data must be generated in order to 

allow the impact of missed detection to be assessed fully.  For 

speed, statistical models are often employed where the 

fluctuation of the radar cross section is used to determine if 

the radar is likely to detect the target at the current range.   

Many statistical target models exist, but often detection 

behaviours based on the Swirling models [1] are employed as 

they provide results that have a known theoretical basis and 

are widely accepted in industry.  The Swirling models were 

developed from observations and radar measurements of 

‘traditional’ targets and also with radar hardware that may use 

quite different processing to modern systems. 

For detection of aircraft at long ranges, the vehicles are often 

observed from an aspect that approximates well to just the 

horizontal plane.   If the vehicle manoeuvres however (e.g. a 

roll manoeuvre that creates a bank during a hard turn), then it 

is possible that the vehicle could be observed from any aspect 

over a full 4π Steradians.  Additionally, although many 

aircraft are still of ‘conventional’ design, there is an 

increasing trend towards platforms that have a reduced radar 

cross section. 

This paper uses electromagnetic simulation of representative 

vehicle structures over a full 4π Steradians and investigates 

how the statistics of the fluctuation of the radar cross section 

of conventional and low observable targets varies with view 

angle, and in particular, analyses the fluctuation in 

comparison to the traditional Swirling model statistics.  As 

the statistical distributions may sometimes be very different 

from the traditional Swerling models, a simple alternative 

approach is presented based using a piecewise approximation 

with two different Weibull distribution sections, which allows 

representative statistics to be mimicked.  The use of a 

piecewise Weibull approximation leads to a simple method of 

creating temporally correlated data to mimic the RCS 

scintillation effects observed with target manoeuvre. 

 

2  Statistical Model Literature Study 
 

The most recognised work on the statistics of the fluctuation 

of target radar cross section was conducted by Swirling [1].  

The models proposed by Swerling considered two different 

forms of target, and also two different forms of radar 

processing/ target behaviour (temporal models).    

The first of the target models assumed that the target RCS 

was created by the reflection from a group of distributed 

scatterers, each of a similar magnitude.   The resulting RCS 

probability density function is an exponential distribution, 

which is also a 2 distribution with 2 degrees of freedom.   

The second target model assumes that within the group of 

scatterers, one of the scatterers has a larger magnitude and 

dominates the return.   The RCS probability density function 

that results is a 2 distribution with 4 degrees of freedom. 

The two alternative temporal models were to consider how 

the echoes from pulses fluctuate between observations, and 

therefore how well the pulse amplitudes correlate when 

integrated.   The first of the temporal scenarios is where the 

target is small (i.e. not many wavelengths in size), or rotating 

only very slowly and therefore there is a negligible change in 

the RCS amplitude between pulses.   The second scenario is 

where the target is very many wavelengths across and is 

rotating quickly, causing every pulse to have a different 

amplitude. 

The reality is that modern targets, especially low-observable 

targets do not necessarily present statistical behaviours that 

are an exact match to either of the Swerling RCS 

distributions.   Modern surveillance radars are also generally 

operating at higher carrier frequencies than when Swerling 

first performed his analysis, meaning that very small changes 

in target aspect are likely to cause some RCS decorrelation 

during the radar integration period. 

Analysis of modern targets has revealed that the RCS profile 

can often be more accurately modelled using log-Normal 
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distributions [2] or even Gaussian Mixture models [3], 

however the issues of how to provide representative control 

of correlation between pulses in a simple manner are not 

always addressed.   Given that the correlation behaviour 

between pulses for low-observable targets may change 

dramatically with aspect [4], alternative methods that can 

recreate RCS characteristics are useful. 

For design and analysis, extended Log-Normal, Weibull and 

Chi-Squared distributions have been employed to provide 

improved predictions of probability of detection when pulses 

are integrated by using behaviour models that use more 

degrees of freedom [5,6,7].  For use in simulation where more 

detailed models of the signal processing algorithms are being 

investigated however, rather than the raw detection statistics, 

what is often needed is an appropriate estimate of the target 

RCS value that changes appropriately on a pulse-to-pulse 

basis.  The RCS value can then be combined with an 

appropriate radar path attenuation and clutter model, and a 

receiver noise and signal processing model, to create 

representative data samples for the radar algorithms.  

Therefore a model is needed that can generate correlated RCS 

samples very quickly and easily and that can capture the key 

statistical behaviours of the target as is both performs large 

manoeuvres between radar waveform dwells, and also on a 

pulse-to-pulse basis. 

By definition, a simulation is not reality and therefore 

understanding how the choice of RCS model impacts on 

simulated results is important.   As the Swerling models are 

well understood and widely accepted in industry, strategies 

where simulation runs are performed using Swerling models, 

and then repeated with alternative RCS statistical behaviours 

can be very instructive in identifying simulation 

characteristics that are very sensitive to the RCS model 

employed. 

 

 

3 Weibull Approximations 
 

The Weibull cumulative distribution function [8] is shown in 

Equation (1) as F(x;μ,k) for a sample from the distribution of 

x and for a distribution with a scale of μ and shape of k.    
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For assessing the RCS distributions, the cumulative 

distribution is modified to allow probabilities of detection to 

be calculated directly and is shown as P(X>x;μ,k), which is 

the probability of observing a new random value X that is 

greater than the specified level of x as shown in Equation (2).  

A random value from the Weibull distribution to represent 

RCS is generated as W in Equation (2), where U is a uniform 

random variable in the interval [0,1]. 
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The piecewise Weibull distribution is created by changing the 

scale and shape parameters μ and k for the regions above and 

below the median, providing two independent curve sections 

to approximate the RCS distribution.   In generating a sample 

from a piecewise distribution, then the uniform random 

number U is generated in the interval [0,1] and tested to see if 

it is greater or less than 0.5, in order to determine which of 

the Weibull distribution section coefficients to employ (see 

Equation (3) to (7) for more details). 

 

 

4 Statistical behaviour of RCS of targets 
 

Two different aircraft targets and a ship target have been 

analysed using the POFacets [9] electromagnetic simulation 

software.   POFacets uses a single-bounce physical optics 

approach to predicting the RCS of targets and although 

limited in its capabilities, produces RCS patterns that are 

representative of many targets, in particular low-observable 

vehicles that have been designed to minimise the multi-

bounce reflections, which POFacets does not model.   The 

POFacets data allows the piecewise Weibull method to be 

demonstrated, and is not intended to provide exact RCS 

results for specific targets.   

For each target, 45000 sample points have been generated at 

random over a full 4π Steradian sphere (upper hemisphere for 

the ship target) and the RCS magnitudes analysed.   The 

analysis has been conducted to investigate how the RCS 

varies in small local regions, and also how RCS varies over 

an entire view sphere.  For the localised analysis, 300 conical 

sections have been generated each with a total cone angle of 

5° (i.e. ±2.5° around the gyratrix of the cone).   The RCS 

cumulative density function within each conical section has 

been analysed.  For the localised analysis, the cumulative 

density has been normalised relative to the median of the data 

in the conical section, and then the spread of these 300 

cumulative density functions analysed.  For the bulk analysis, 

the 300 cone medians have been used to form a separate 

density estimate of how the RCS varies over the full sphere.  

The analysis of the conventional aircraft shown in Figure 1 at 

15GHz are shown in Figure 2 for the normalised local 

behaviours, and for the bulk statistic behaviours in Figure 3.  

To generate a representative target RCS, a sample is first 

drawn from the normalised local distribution in Figure 2, then 

multiplied by a sample drawn from the bulk distribution 

shown in Figure 3.   The samples drawn from the local 

distribution in Figure 2 will vary on a pulse-by-pulse basis, 
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whereas the samples from the bulk distribution in Figure 3 

will usually only need to be reselected for each new 

integration interval or significant change of the target 

characteristics. 

 
Figure 1: CAD model of conventional aircraft 

 

 
Figure 2: Normalised Local CDF comparison for 

conventional aircraft 

   

 
Figure 3: Bulk CDF of local medians for conventional aircraft 

 

 

Therefore the model data can be used to mimic an RCS value 

by using the bulk RCS model to capture the ‘slow’ behaviour 

of the RCS changing with either view angle, change of carrier 

frequency, or due to RCS range-dependency at short ranges; 

the local behaviour can then be used to generate RCS samples 

that are representative of individual pulses within a 

waveform.  The coefficients of the piecewise Weibull bulk 

and local regions for the conventional aircraft are: 

 

Local Coefficient Bulk Coefficient 

xmed kL kH xmed kL kH xmin 

0dBm2 0.99 0.97 -10.0dBm2 0.94 0.28 -25dBm2 

 

Where kL is the shape coefficient for RCS values less than the 

median, kH is the shape coefficient to use for RCS values 

higher than the median, and xmed is the median value for the 

Weibull distribution to use to calculate μL and μH using 

Equation (1) (see equation (7) for more details of how kL and 

kH are employed and equation (8) to see how they are 

calculated).  

It is interesting to note that for the local behaviours, the 

Swerling 1 and 2 model behaviour is a very good 

approximation to the median statistics across all 300 cone 

regions (k=1 would be a match to Swerling 1 and 2).  For the 

bulk RCS however, for RCS values less than the median, the 

Swerling 1 model is again reasonable, but a very long-tailed 

distribution is needed to model larger RCS values above the 

median indicated by a k value much less than unity. 

 
Figure 4: CAD model of low-observable aircraft 

 

The analysis of the low-observable aircraft shown in Figure 4 

at 15GHz are shown in Figure 5 for the normalised local 

behaviours, and for the bulk statistic behaviours in Figure 6.  

The coefficients of the bulk and local regions for the low-

observable aircraft are: 

 

Local Coefficient Bulk Coefficient 

xmed kL kH xmed kL kH xmin 

0dBm2 1.0 0.95 -15.9dBm2 0.58 0.18 -39dBm2 

 

The Weibull parameters for the local region of the low 

observable aircraft are very similar to the Swerling 1 statistics 

seen for the conventional aircraft, but for the bulk statistics, 

both the low and high regions deviate by a large margin from 

the Swerling model behaviours.  Although the Weibull curve 

is not a ‘perfect’ match to the POFacets generated RCS 

statistics, the use of the piecewise Weibull function is still 

very much closer to the RCS bulk data than if the Swerling 

models are employed.   

The Weibull models are primarily intended to be used to 

generate representative RCS values in a simulation, rather 

than to provide analytical analysis of probability of detection; 
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when probability of detection is concerned, the shape of the 

curve above the median is of little consequence for Pd<50%, 

and only has limited impact for Pd<70%.  For pulse-to-pulse 

simulation for testing signal processing algorithms, the RCS 

fluctuation over the full range is of interest however.   

Equation (1) can be used to generate appropriate xmed median 

value for the bulk statistics from a desired mean RCS and the 

curves then offset if different target sizes are required to be 

simulated. 

 

 
Figure 5: Normalised Local CDF comparison for low-

observable aircraft 

 

 
Figure 6: Bulk CDF of local medians for low-observable 

aircraft 

 

The coefficients of the bulk and local regions for the ship 

target are: 

 

Local Coefficient Bulk Coefficient 

xmed kL kH xmed kL kH xmin 

0dBm2 0.87 0.59 21.4dBm2 0.94 0.53 3dBm2 

 

The Weibull parameters for the local region of the ship are 

interesting in that the spread of RCS values below the median 

is similar to the Swerling 1 and 2 distribution, however above 

the median, there is more deviation indicating a more long-

tailed distribution.   For the bulk statistics, there is a better 

match to the Swerling 1 and 2 for values below the median, 

but again a long-tailed distribution is observed for values 

above the median. 

 
Figure 7: Normalised Local CDF comparison for ship 

 

 
Figure 8: Bulk CDF of local medians for ship 

 

 

6 Generating Samples from RCS Distribution 
 

The Swerling modelling approach not only captured the 

distribution of the instantaneous RCS behaviour for a single 

pulse, but also attempted to provide models of the correlation 

between pulses when the radar performed integration.  As the 

piecewise Weibull process is intended for use in simulation 

rather than analytical design analysis, it is appropriate to 

employ a more flexible correlation modelling mechanism. 

The RCS statistical analysis revealed that for a localised RCS 

region, the median behaviour is often very close to the 

Swerling 1 and 2 behaviour and the RCS scintillation within 

an integration period would be drawn from this ‘local’ 

distribution with a correlation between samples that is related 

to the target electrical size and rotation rate.  Between 

processing intervals however, the overall median radar cross 

section may vary in a very non-Swerling manner and may 

have a very different temporal correlation behaviour.  

 

A mechanism is desired that allows RCS sample values to be 

generated from the ‘local’ distribution for each pulse with a 
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desired correlation behaviour, and also from the ‘bulk’ RCS 

distribution with a different temporal correlation pattern. 

A convenient method for generating temporally correlated 

samples from any distribution is through the use of a 

Memoryless Non-Linear Transform (MNLT) process [10].  

The MNLT method has been used for modelling correlated 

clutter samples, but is also very applicable to the modelling of 

RCS sample correlation.   The MNLT process operates by 

generating random samples from a Gaussian distribution, and 

then using a filtering process to impart a desired spectral 

density, which will therefore impart a temporal correlation 

relationship.    Often for radar modelling, the spectral shaping 

will be in the form of a low-pass filtering operation of the 

Gaussian samples.   As low-pass filtering is a convolution 

process (i.e. multiply samples by a window, and then sum), 

the central limit theorem causes the Gaussian samples after 

filtering to remain Gaussian distributed.   As the probability 

density of the samples is known to still be Gaussian, then a 

mapping function can be applied that transforms the Gaussian 

samples into any other desired probability density function. 

The choice of the Weibull distribution for mimicking the 

statistical behaviour of the RCS was influenced by the 

simplicity of implementing a transform from filtered 

Gaussian samples into the desired Weibull statistics. 

 

The generation of a Weibull sample employs two streams of 

independent random numbers generated from a Gaussian 

Normal distribution noted as N1(t) and N2(t), where t is the 

time sample index in practice.  Both streams are passed 

independently through the filter function represented by the 

impulse response I(t).  The filter could be a Finite impulse 

response filter, where I(t) would represent the filter 

coefficient vector directly, or an Infinite impulse response 

filter process where the impulse response can be evaluated 

numerically.  Equation (3) details the filtering process to 

obtain one of the Gaussian data streams that maintains the 

unity variance properties of a Normal distribution, but gains 

inter-sample correlation properties, where ‘*’ is the process of 

convolution. 
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If the latest values of the two filtered Gaussian streams G1(t) 

and G2(t) are squared and summed, the resulting sample will 

follow a Chi-Squared distribution with two degrees of 

freedom.  For the generation of the Weibull random samples, 

we ideally need a sample drawn from a uniform distribution; 

luckily the conversion from the Chi-Squared sample to a 

uniform sample may be achieved quite simply using the non-

linear transform detailed in the derivation in Equation (4) and 

(5), where F(y,v) describes the cumulative distribution 

function for a Chi-Squared distributed variable y with v 

degrees of freedom [11], Γ(.) is the Gamma function, and 

γ(s,q) is the lower incomplete Gamma function. 
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For v=2 degrees of freedom,  
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From Equation (5), we can now see that if we generated a 

random number by squaring and summing two Normally-

distributed random values, then the cumulative distribution 

F(y,2) describes the probability of the generated random 

number being less than a reference value y.   If we replaced 

the reference y in Equation (5) with the generated random 

number, then the transformed number that results would now 

still be random, but follow a uniform distribution.   As the 

output distribution is uniform (denote by the distribution 

“U”), then p=1-U is still uniformly distributed as indicated in 

Equation (6): 
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Therefore the Memoryless Non-Linear Transform proceeds 

by mixing the two filtered Gaussian data stream into a Chi-

Squared distribution by combining the magnitude of the two 

Gaussian samples (i.e. the parameter z in (7) will be Chi-

Squared distributed), and then to a uniform distribution as the 

parameter p.  The uniformly distributed data in p are mapped 

using the cumulative distribution of the Weibull distribution 

into the RCS value representation W.  To achieve the 

piecewise split of the model, the value p is tested to determine 

which half of the model curve it lies in, and the appropriate μ 

and k coefficients selected to represent the high value or low 

value RCS model sections.  Two separate MNLT processes, 

one for the localised RCS response and one for the global 

response will be required, resulting in two filter impulse 

functions and a total of four streams of Normal distributed 

numbers being required, resulting in two Weibull values, one 

changing on a pulse-to-pulse basis, Wlocal, and one changing 

with each waveform, Wglobal.  In practice, a sample drawn 

from an analytic Weibull distribution will have a very small 

probability of being a very small value approaching zero.  In 

reality, real targets will not have their RCS fade completely 

and therefore a small correction factor, xmin, has been added to 

the generated RCS values in order to provide a practical lower 

limit to the modelled RCS.  The full process is described in 

Equation (7), based on the results from Equations (2), (3) and 
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(6) with the RCS samples in W having units of metres 

squared.   
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To generate the xmed, μ and k values from the raw RCS 

samples, the 10th, 50th and 90th percentile RCS values are 

captured as x10, xmed and x90 and by rearranging (1) and 

solving the simultaneous equations, Equation (8) results. 
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Figure 9: RCS simulation for low-observable aircraft.  

 

A simulation has been conducted for the low-observable 

aircraft where the aircraft is observed with a LPRF of 7500Hz 

that is integrated for 10ms for each waveform dwell.  The 

local RCS variation is modelled as fluctuating with a 

bandwidth of 13.3Hz, and the bulk median RCS fluctuating 

with a bandwidth of 0.8Hz in order to simulate the typical 

RCS variation with changing range that may be experienced 

by a missile seeker at a few kilometres from the target.  The 

variation in RCS over 30 waveform dwells is shown in Figure 

9.  It is clear from the figure that for many of the dwells, the 

RCS scintillation during the waveform period is small, 

however when RCS fades occur such as during waveform 

number 16, variations of 10dB or so may be observed, which 

can impact on the radar signal processing stages.    

7 Conclusions 

The piecewise Weibull approach to modelling the RCS 

statistics is simple and allows non-Swerling behaviours to be 

approximated, as well as capturing the behaviour of targets 

that can be approximated by the classic Swerling statistical 

behaviours.  The use of the Weibull distribution in 

combination with a memoryless non-linear transform 

approach can produce controlled temporal correlation 

between the RCS scintillations that are modelled.   
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